NSI Rising Star Seminar: Søren E. Degn

In our next NSI Rising Star Seminar, we will be hosting Søren E. Degn (PhD, Associate Professor, DFF Research Leader and Lundbeckfonden Ascending Investigator) with a talk on “B cells – the bad boys at the back of the bus”. Look forward to seeing you there!

Meeting details:
Speaker: Søren E. Degn
Title: B cells – the bad boys at the back of the bus
Time and date: Thursday, February 27 at 14:00
Meeting link: https://uio.zoom.us/j/67297197985?pwd=bqgeirifg4EMy2Tph8fTcgzqlnWauU.1
Meeting ID: 672 9719 7985
Passcode: 916148

Talk abstract:
B cells are increasingly recognized not simply as precursors of antibody-producing cells, but as central players across a broad range of autoimmune diseases. In recent work, my group demonstrated that B cells can act as primary antigen-presenting cells priming proto-autoreactive T cells and driving epitope spreading in a murine model of systemic lupus erythematosus (Fahlquist-Hagert et al., Nature Communications 2023). Taking this as a starting point, I will touch upon recently published (Fahlquist-Hagert et al., iScience 2024) and unpublished work characterizing the role of T-follicular regulatory cells in curbing autoreactive germinal center responses, including the use of an intravital abdominal imaging window approach for longitudinal studies of immune processes in the spleen (https://doi.org/10.1101/2025.01.06.631523). Finally, I will present ongoing work, in which we have identified a previously unappreciated link between age-associated B cells and CD8 T cell activation and exhaustion.

More information about Søren E. Degn:
Søren completed his BSc (2004) and MSc (2007) in Molecular Biology at Aarhus University. During his MSc, he spent a year at the Departments of Biochemistry and Immunology at the University of Toronto, Canada where he worked with Professor David E. Isenman. Søren then joined the laboratory of Professors Jens Chr. Jensenius and Steffen Thiel, where he completed his PhD in Immunology (2010), on the topic of the lectin pathway of complement. His thesis work included the discovery of a novel regulatory component of this pathway, the protein MAp44 (Degn et al., Journal of Immunology 2009). In the course of his PhD studies, Søren also worked for a year in the laboratory of Professor Michael C. Carroll at the Immune Disease Institute, Harvard Medical School, where he contributed to elucidating how influenza viral antigen is transported and presented in the draining lymph node in a vaccination setting (Gonzalez et al., Nature Immunology 2010). Following award of his PhD degree, Søren continued his work on the lectin pathway of complement as a postdoctoral fellow (2011-2013) with Professors Jens Chr. Jensenius and Steffen Thiel. In a series of papers (Degn et al., Journal of Immunology 2012; Degn et al., Journal of Immunology 2013; Degn et al., PNAS 2014), Søren presented a novel theory for the activation mechanism of the lectin pathway of complement. In 2013, he returned to the laboratory of Professor Michael C. Carroll, now at the Program in Cellular and Molecular Medicine (PCMM) at Boston Children’s Hospital and Harvard Medical School. During his Marie Curie Fellowship at the PCMM, Søren elucidated the clonal evolution of autoreactive germinal centers (Degn et al., Cell 2017), and built his expertise within lymphocyte biology using in vivo models and two-photon microscopy, forming the basis of his return to Aarhus University as a Group Leader and Assistant Professor in 2017. In March 2022, he was promoted to tenured Associate Professor at the Department of Biomedicine. Søren continues to work on autoimmune diseases (van der Poel et al., Cell Reports 2019; Juul-Madsen et al., PNAS 2021; Fahlquist-Hagert et al., Nature Communications 2023), but in recent years his attention has also turned to the molecular mechanism behind antigen-driven activation of the B-cell receptor (Ferapontov, Omer et al, Nature Communications 2023; Degn & Tolar, Nat. Rev. Immunol. 2024).
Google scholar: https://scholar.google.com/citations?user=EyXW-8sAAAAJ&hl=en&oi=ao

Key papers
1. Antigen presentation by B cells enables epitope spreading across an MHC barrier
2. Antigen footprint governs activation of the B cell receptor

NSI Rising Star Seminar: Anna Hammerich Thysen

In our next NSI Rising Star Seminar, we will be hosting Anna Hammerich Thysen (Assistant Professor, Department of Biotechnology and Biomedicine, Technical University of Denmark) with a talk on “Do dural brain border immune cells mediate brain fog in allergic asthma?”. Look forward to seeing you there!

Meeting details:
https://uio.zoom.us/j/67297197985?pwd=bqgeirifg4EMy2Tph8fTcgzqlnWauU.1
Meeting ID: 672 9719 7985
Passcode: 916148

Title of the talk: Do dural brain border immune cells mediate brain fog in allergic asthma?

Abstract:
The Covid-19 pandemic emphasized the long-lasting neurological symptoms that accompany immune diseases of the lung. Individuals with airway allergy and asthma experience deficits in learning, memory and attention span; a so-called brain fog. For individuals with seasonal allergy, symptoms peak during the season of their allergen, suggesting a direct correlation between allergen dose and neurological response. Here, we address this otherwise overlooked symptom burden. Our hypothesis is that allergy-like immune cells at the dural brain border mediate the cognitive burden in airway allergy and asthma. We are establishing a mouse model for memory and learning deficits in allergic asthma. By combining our mouse model with high-dimensional flow cytometry, immunohistochemistry, single cell analysis, and genetic mouse models, our aim is to 1) map the immunological and neurological mechanisms underlying lung-to-brain cognitive symptoms; and to 2) design and test novel treatment strategies.

Bio:
Dr. Anna Hammerich Thysen is an Assistant Professor at the Department of Biotechnology and Biomedicine at the Technical University of Denmark (DTU). Anna received her PhD degree from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) under the supervision of Susanne Brix. Following collection of 189 immune cell and cytokine parameters in 541 infants; Anna identified discrete immune phenotypes in 18-months-old infants preceding the development of transient and persistent asthma at school age. During her postdoc in the lab of Katharina Lahl, Anna developed a neonatal re-infection model for respiratory syncytial virus in mice. Anna was able to show a critical role for cDC1 dendritic cells during healthy re-infection, and a lack of neonatal cDC1 DCs would lead to massive airway eosinophilia and type 2 immune pathology in adulthood. Anna then ventured into research in industry; first with neuroimmune diseases at Lundbeck and then allergy and asthma at ALK. As a solo mother of three young children, Anna is now in the initial stages of establishing her independent career with a research focus on type 2 immune regulation in the neuroimmune, viral, and neonatal aspects of airway disease.

Google scholar: https://scholar.google.dk/citations?user=8_OS3k4AAAAJ&hl=da

Key publications:

  1. Distinct immune phenotypes in infants developing asthma during childhood. Science translational medicine 12, no. 529 (2020): eaaw0258.
  2. Season of birth shapes neonatal immune function. Journal of Allergy and Clinical Immunology 137, no. 4 (2016): 1238-1246.

Guest lecture with Prof. Kristian Andersen -“The origin of a pandemic – the facts and the fiction”

Dear NSI members, 
NSI and the Norwegian Biochemical Society Oslo (NBS Oslo) jointly invites you to a guest lecture by Professor Kristian G Andersen (Scripps Research, La Jolla, USA), where he will give a lecture on “The origin of a pandemic – the facts and the fiction”. 

Meeting details: Date/time: Thursday October 17th, 14:15-15:30
Location: Lille Auditorium, Domus Medica, UiO Gaustad Campus, https://link.mazemap.com/RDL5JFni
Coffee/tea and refreshments are served from 14:00 

Unable to attend in person? Follow the Webinar here: https://uio.zoom.us/j/63134655575

Title of talk: The origin of a pandemic – the facts and the fiction

Short bio: Professor Andersen’s research interest is on host-pathogen interactions and his lab uses a broad array of approaches including sequencing, experiments, field work and computational methods. He has contributed much to the studies on Zika, Ebola, West Nile and Lassa viruses, and most recently, SARS-CoV-2, where he has been one of the key scientist investigating the origin of SARS-CoV-2. 

Abstract: Understanding SARS-CoV-2’s origins is crucial for preventing future pandemics. Early reports and research identified Wuhan’s Huanan Market as a likely origin of the COVID-19 pandemic, but this hypothesis became controversial, with subject matter experts becoming frequent targets of rampant, and still-ongoing, conspiracism and political attacks. In a series of papers, our research has shown that the earliest COVID-19 cases, including those without direct links to the market, were both centered around on, and much closer to, the market than expected by chance. We also show that multiple species of likely intermediate hosts were for sale at the market, including clear genetic signatures of racoon dogs, bamboo rats, and civets co-mingling in samples also positive for SARS-CoV-2. Further, we found that virus and susceptible animal samples clustered in a specific corner of the market, exactly where wildlife was being sold prior to the start of the pandemic. Our phylodynamic analyses strongly suggest that at least two separate cross-species transmission events occurred in late November and early December 2019 at the market, with the timing of the early market outbreak corresponding to the start of the pandemic itself. Combined, our studies give us unprecedented insights into the origin of a once-in-a-lifetime pandemic at a granularity never previously achieved, pointing to the unregulated wildlife trade in China as the culprit, and the Huanan Market as the early epicenter of SARS-CoV-2 emergence.  

Look forward to seeing you there!

Seminar on Deciphering the antibody repertoire using antibody proteomics

Dear colleagues,
It’s our pleasure to invite you to a seminar on “Deciphering the antibody repertoire using antibody proteomics”.

Location: Rødt Auditorium, Rikshospitalet
Time: Tuesday 24 Sept, 10.00–12.00
(Sweets and fruits will be served before the start of the seminar)

Three speakers:
Dr. Albert Bondt,  Biomolecular Mass Spectrometry and Proteomics group at Utrecht University. 45 min, gscholar: https://scholar.google.nl/citations?hl=nl&user=zSueyEkAAAAJ&view_op=list_works&sortby=pubdate
Talk title: Top-down immunoglobulomics: starting from the end
Brief abstract of talk: “Antibodies are widely recognized for their important role in immunity. Antibodies are protein products of completely matured and highly specialized B cells. Most of the research that is currently being done, however, starts from intermediate stages in B cell development. We take another route, and study antibodies starting from their final developmental stage, namely the circulating and secreted proteins. In my presentation I will share some of our main discoveries and future research directions. “

Douwe Schulte, Biomolecular Mass Spectrometry and Proteomics group at Utrecht University, 25 min
Talk title: Bottom-up immunoglobulomics

Khang Lê Quý, University of Oslo, 25 min
Talk title: Benchmarking and integrating human B-cell receptor genomic and antibody proteomic profiling (https://www.nature.com/articles/s41540-024-00402-z)

All the best, looking forward to seeing many of you there!